Approximation of Vector-Valued Random Variables by Constants

N. HERRNDORF*

Mathematisches Institut der Universität Köln, D-5000 Cologne 41, West Germany

Communicated by Oved Shisha

Received March 27, 1981; revised March 18, 1982

Let *E* be a Banach space. If the closed balls in *E* are a compact system, then for every *E*-valued strongly μ -measurable random variable *X*, and every nondecreasing $\Phi: [0, \infty) \to [0, \infty)$, there exists an $x \in E$ minimizing $\int \Phi(||X - x||) d\mu$. If $\Phi(x) = x^p$, 1 , and*E* $is strictly convex, then the operator <math>T_p$, assigning to each *X* the best approximating $x \in E$, is linear, if and only if the underlying probability space consists of at most 2 atoms, or p = 2 and *E* is a Hilbert space.

INTRODUCTION

Throughout this paper $(\Omega, \mathscr{A}, \mu)$ denotes a probability space. $(E, \| \|)$ is a Banach space; for $x \in E$ and $r \ge 0$, B(x, r) is the closed ball centered at x with radius r. For $1 \le p < \infty$, $L_n(\mu, E)$ denotes the space of equivalence classes of strongly μ -measurable E-valued functions with $\int ||X||^p d\mu < \infty$. In the first section, Φ is always a nondecreasing continuous function with $\Phi(0) = 0, \ \Phi: [0, \infty) \to [0, \infty)$. A sufficient condition for the existence of solutions of the following approximation problem will be given: If $X: \Omega \to E$ is a strongly μ -measurable function, find $x \in E$ such that $\int \Phi(||X - x||) d\mu =$ $\inf\{|\Phi(||X-y||) d\mu: y \in E\}$. For convex Φ this is a special case of a more general approximation problem considered in [1] and [2]. The results for the special case in this paper are valid for a larger class of Banach spaces E, including L_1 -spaces, and the loss function Φ is more general. In the second section we restrict ourselves to strictly convex Banach spaces and $\Phi(x) = |x|^p$, 1 . Except for rather trivial probability spaces theoperator $T_p: L_p(\mu, E) \to E$, assigning to each $X \in L_p(\mu, E)$ the best approximating constant, is linear, if and only if p = 2 and E is a Hilbert space. For $E = \mathbb{R}$ the linearity of projection operators with respect to $\| \|_{p}$ has been

^{*} Acknowledgement: The author thanks the referee for his remarks and suggestions.

N. HERRNDORF

investigated in [4, 6]. The additional result in this paper is: Linearity of T_2 implies that E is a Hilbert space. Finally, the relation between the Bochner integral and the approximation by a constant is discussed.

1. EXISTENCE OF BEST APPROXIMANTS

The following facts about compact systems of sets will be needed. A system \mathscr{C} of subsets of a set M is called compact, if \mathscr{C} has the finite intersection property, i.e., if $\mathscr{C}_0 \subset \mathscr{C}$ and $\bigcap \mathscr{C}_1 \neq \emptyset$ for every finite subsystem of \mathscr{C}_0 , then $\bigcap \mathscr{C}_0 \neq \emptyset$. The following remark is an easy consequence of a theorem of Alexander [3, Theorem 5.6].

Remark 1.1. If \mathscr{C} is a compact system, then the system $\tau(\mathscr{C})$ of arbitrary intersections of finite unions of elements of \mathscr{C} is the system of closed sets of a topology on M. Endowed with this topology, M is a quasi-compact space, i.e., $\tau(\mathscr{C})$ is a compact system.

A Banach space is said to have the intersection property (*IP*), if $\{B(x, r): x \in E, r > 0\}$ is a compact system. The following theorem shows that (*IP*) is a sufficient condition for the existence of best approximants.

THEOREM 1.2. Let $(\Omega, \mathscr{A}, \mu)$ be a probability space, E a Banach space with (IP), $\Phi: [0, \infty) \to [0, \infty)$ a nondecreasing continuous function with $\Phi(0) = 0$. For every strongly μ -measurable function $X: \Omega \to E$, there exists $x \in E$ with $\int \Phi(||X - x||) d\mu = \inf\{\int \Phi(||X - y||) d\mu: y \in E\}$.

 $e = \lim_{t \to \infty} \boldsymbol{\Phi}(t)$. W.l.g. we Proof. Let assume that d := $\inf\{ \int \Phi(||X-y||) d\mu: y \in E \} < e.$ Choose $\varepsilon > 0$ such that $(1-\varepsilon)(e-\varepsilon) > d$, if $e < \infty$, $(1 - \varepsilon) \varepsilon^{-1} > d$, if $e = \infty$. Choose K > 0 such that $\mu\{||X|| \le K\} \ge \varepsilon$ $1-\varepsilon$, and M > K, such that $\Phi(M-K) \ge e-\varepsilon$, if $e < \infty$, $\Phi(M-K) \ge \varepsilon^{-1}$. $\int \Phi(||X-y||) d\mu \ge$ if $e = \infty$. For $y \in E$ with ||y|| > M holds $(1-\varepsilon) \Phi(M-K) > d$. Therefore $\inf\{\int \Phi(||X-y||) d\mu: y \in B(0,M)\} = d$. Let τ be the coarsest topology on B(0, M) with all $B(x, r) \cap B(0, M)$, $x \in E$, r > 0, as closed sets. Since (IP) is fulfilled and, according to 1.1, $(B(0, M), \tau)$ is quasi-compact. We will show now that the function $G: B(0, M) \rightarrow [0, \infty]$ with $G(x) = \int \Phi(||X - x||) d\mu$ is lower semicontinuous (l.s.c.). Put $G_L(x) =$ $\int \Phi(||X-x||) \mathbf{1}_{\{||X|| \le L\}} d\mu \text{ for } L > 0. \text{ Then } G(x) = \sup\{G_L(x): L > 0\}, \text{ and it}$ suffices to prove that $G_{L}(x)$ is l.s.c. for L > 0 fixed. The sets $B(x, r) \cap$ $B(0, M), x \in E, r > 0$ are closed under τ , whence the function $x \to ||x + y||$ is l.s.c. for every $y \in E$. If $\alpha_i > 0$ and $x_i \in E$, $i \in \mathbb{N}$, are given, then $x \to \infty$ $\sum_{i \in \mathbb{N}} \alpha_i \Phi(||x_i - x||)$ also is l.s.c.. Thus for every countably valued random variable Y the function $G_{L,Y}(x) = \int \Phi(||Y-x||) \mathbf{1}_{\{||X|| \leq L\}} d\mu$ is l.s.c.. This proves the theorem for countably-valued X. For general X we have to show $\{x \in B(0, M): G_L(x) > a\}$ is τ -open for $a \in \mathbb{R}$, so assume $G_L(x_0) = a + \varepsilon$ for

some $x_0 \in B(0, M)$, $\varepsilon > 0$. Since Φ is uniformly continuous on compact intervals, there exists $\delta > 0$ such that $0 \leq t \leq L + M$, $|t-s| \leq \delta$ implies $|\Phi(t) - \Phi(s)| < \varepsilon/2$. There exists a countably valued random variable $Y: \Omega \to E$ with $||X - Y|| \leq \delta$ μ -a.e.. Then follows $|\Phi(||X - x||) - \Phi(||Y - x||)| < \varepsilon/2$ on the set $\{\omega \in \Omega : ||X(\omega)|| \leq L\}$ for all $x \in B(0, M)$. Thus, $|G_{L,Y}(x) - G_L(x)| < \varepsilon/2$ for all $x \in B(0, M)$. Hence: $\{x \in B(0, M):$ $G_L(x) > a\} \supset \{x \in B(0, M): G_{L,Y}(x) > a + \varepsilon/2\}$, and this last set is open and contains x_0 .

It follows from the above proof that the condition of 1.2 can be weakened for the case of a countably- or finite-valued random variable X.

Remark 1.3. Let $I = \mathbb{N}$, or $I = \{1, ..., n\}$ for some $n \ge 2$. Let $X = \sum_{i \in I} x_i 1_{A_i}$ with $x_i \in E$, $A_i \in \mathscr{A}$. If $\mathscr{C}((x_i)_{i \in I}) = \{B(x_i, r): i \in I, r > 0\}$ is a compact system, then there exists $x \in E$ with $\int \Phi(||X - x||) d\mu = \inf\{\int \Phi(||X - y||) d\mu: y \in E\}$.

In the following remarks the assertions of 1.2 and 1.3 are discussed in some special situations. The case n = 2 in 1.3 is simple.

Remark 1.4. For $x_1, x_2 \in E \ \mathscr{C}(x_1, x_2)$ is always a compact system. Hence, for $a_i > 0$ and every Φ there exists $x \in E$ such that $\alpha_1 \Phi(||x_1 - x||) + \alpha_2 \Phi(||x_2 - x||) = \inf\{\alpha_1 \Phi(||x_1 - y||) + \alpha_2 \Phi(||x_2 - y||): y \in E\}$. Moreover, it is easy to verify that x can be taken as $\lambda x_1 + (1 - \lambda) x_2$ with some $\lambda \in [0, 1]$.

The following example shows that the situation is more complicated if $n \ge 3$.

EXAMPLE 1.5. Consider the space \mathbb{R}^3 endowed with the norm $||(a_i)|| =$ $\sum_{i=1}^{3} |a_i|$. Set $u_1 = (0, 0, 0), u_2 = (1, -1, 0), u_3 = (1, 0, -1)$. Then elementary calculus implies that u = (1, 0, 0) is the unique solution of $\sum_{i=1}^{3} ||u_i - u||^2 =$ $\inf\{\sum_{i=1}^{3} ||u_i - v||^2 : v \in \mathbb{R}^3\}$. Let $H = \{(a_i) \in \mathbb{R}^3 : \sum_{i=1}^{3} a_i = 0\}$. It is obvious that there exists $u' \in H$ with $\sum_{i=1}^{3} \|u_i - u'\|^2 = \inf\{\sum_{i=1}^{3} \|u_i - v\|^2 : v \in H\}$. Since $u \notin H$, holds $d := \sum_{i=1}^{3} \|\overline{u_i} - u'\|^2 > 3 = \sum_{i=1}^{3} \|\overline{u_i} - u\|^2$. Choose $\varepsilon > 0$ with $3(1+\varepsilon)^2 < d$. After these preliminary remarks, we define a Banach space E as follows: Let $c_1 = c_2 = c_3 = 1$, and $(c_k)_{k \ge 4}$ be a bounded strictly increasing sequence with $c_4 = \varepsilon^{-1}$. Define $E = \{(a_i) \in l_1 : \sum_{i \in \mathbb{N}} a_i c_i = 0\}$, and $||(a_i)|| = \sum_{i \in \mathbb{N}} |a_i|$. The boundedness of (c_i) implies that E is a closed subspace of l_1 . Let $e_i, j \in \mathbb{N}$, be the standard basis of l_1 . Define $x_i \in E$, i = 1, 2, 3 by $x_1 = 0, x_2 = e_1 - e_2, x_3 = e_1 - e_3$. Assume that there exists $x = (a_i) \in E$ with $\sum_{i=1}^3 ||x_i - x||^2 = \inf\{\sum_{i=1}^3 ||x_i - y||^2 : y \in E\}$. If $a_i = 0$ for all $i \ge 4$, then $\sum_{i=1}^{3} ||x_i - x||^2 \ge d$, but $y = e_1 - \varepsilon e_4 \in E$ fulfills $\sum_{i=1}^{3} ||x_i - y||^2 = 3(1 + \varepsilon)^2 < d$. Therefore, there exists some $j \ge 4$ with $a_j \neq 0$. Then $z = x - a_j e_j + a_j c_j c_{j+1}^{-1} e_{j+1} \in E$ and $\sum_{i=1}^{3} \|x_i - z\|^2 <$ $\sum_{i=1}^{3} ||x_i - x||^2, \text{ since } (c_i)_{i>4} \text{ is strictly increasing. Hence there exists no } x \in E \text{ with } \sum_{i=1}^{3} ||x_i - x||^2 = \inf\{\sum_{i=1}^{3} ||x_i - y||^2 : y \in E\}. \text{ According to } 1.3,$ $\mathscr{C}(x_1, x_2, x_3)$ is not a compact system in this example.

N. HERRNDORF

The assumption " $\mathscr{C}(x_1,...,x_n)$ compact for every $n \ge 2$ and all $x_1,...,x_n \in E$ " is not strong enough to imply the existence of best approximants for countably valued random variables.

EXAMPLE 1.6. If $E = c_0$, the system $\mathscr{C}(x_1, ..., x_n)$ is always a compact system, but the system of all closed balls in c_0 is not compact. Take $\Omega = \mathbb{N} \cup -\mathbb{N}$ and define a probability measure $\mu \mid \mathscr{P}(\Omega)$ by $\mu(\pm n) = 2^{-n-1}$. If $X: \Omega \to c_0$ is defined by $X(\pm n) = \pm e_1 + 2e_n$, $n \in \mathbb{N}$, and Φ is a strictly convex function, then there exists no $x \in c_0$ with $\int \Phi(||X - x||) d\mu = \inf\{\int \Phi(||X - y||) d\mu: y \in c_0\}$.

The following remark shows that there are many spaces, which fulfill (IP).

Remark 1.7. (i) Every dual space has (IP).

(ii) Every weak-*-closed subspace of a dual space has (IP).

(iii) If there exists a linear projection $\pi: E^{**} \to E$ with $||\pi|| \leq 1$, then E has (*IP*).

(iv) For every σ -finite measure space $(\Sigma, \mathscr{F}, v) L_1(v, \mathbb{R})$ has (*IP*).

Proof. (i) and (ii) follow from the weak-*-compactness of closed balls in dual spaces.

(iii) If $\mathscr{C} = \{B(x_i, r_i)\}$ is a system of closed balls in *E*, then define $B'(x_i, r_i) = \{y \in E^{**}: ||x_i - y|| \leq r_i\}$. If every finite subsystem of \mathscr{C} has nonvoid intersection, then by (i) there exists $x' \in \bigcap B'(x_i, r_i)$. Then $x = \pi(x') \in \bigcap B(x_i, r_i)$.

(iv) For $E = L_1(v, \mathbb{R})$ E^{**} can be identified with the space of bounded additive set functions on \mathscr{F} , which vanish on μ -null sets [7, Th. 2.3]. For every $\rho \in E^{**}$ let $\pi(\rho)$ be a v-density of the σ -additive part of the Yoshida-Hewitt decomposition of ρ [7, Th. 1.23]. Then $\pi: E^{**} \to E$ is a linear projection with $||\pi|| \leq 1$. Hence (iii) implies (iv).

2. Linearity of Best Approximation with Respect to $\| \|_{p}$

In this section we will assume that E is a strictly convex Banach space, and that (IP) is fulfilled. Then, for every probability space $(\Omega, \mathscr{A}, \mu)$ and every $p \in (1, \infty)$ we define an operator $T_p: L_p(\mu, E) \to E$ by

$$\int \|X - T_p X\|^p \, d\mu = \inf \left\{ \int \|X - y\|^p \, d\mu : y \in E \right\}.$$
 (2.1)

Since E is strictly convex and Φ is a strictly convex function for every $p \in (1, \infty)$, $T_p X$ is uniquely determined by (2.1).

THEOREM 2.2. T_p is linear if and only if

- (a) Ω is the union of 2 μ -atoms, or
- (b) p = 2 and E is a Hilbert space.

Proof. 1. Let $A_i \in \mathcal{A}$, i = 1, 2, be disjoint sets with $\Omega = A_1 \cup A_2$, $\alpha_i = P(A_i)$, and $x_i \in E$ for i = 1, 2. Using 1.4 and differential calculus, we obtain

$$T_p(x_1 \mathbf{1}_{A_1} + x_2 \mathbf{1}_{A_2}) = \beta_1 x_1 + \beta_2 x_2$$

with $\beta_i = \alpha_i^r / (\alpha_1^r + \alpha_2^r)$ $i = 1, 2, r = (p-1)^{-1}.$ (2.3)

(2.3) clearly implies that T_p is linear, if (a) is fulfilled.

2. If (b) is fulfilled, then T_p is linear, since $T_p = T_2$ is a projection on a closed subspace of the Hilbert space $L_2(\mu, E)$.

3. Assume that (a) is not fulfilled and p > 2. There exist disjoint sets $A_i \in \mathscr{A}$, i = 1, 2, 3, with $\alpha_i = \mu(A_i) > 0$ and $\Omega = A_1 \cup A_2 \cup A_3$. Put $r = (p-1)^{-1}$. W.l.g. we assume $\alpha_3^r + (1-\alpha_3)^r \ge \alpha_i^r + (1-\alpha_i)^r$ for i = 1, 2. Take an arbitrary $x \in E - \{0\}$ and define $X_i = x \mathbf{1}_{A_i}$ for i = 1, 2. According to (2.3) we have $T_p X_i = \beta_i x$, i = 1, 2, with $\beta_i = \alpha_i^r / (\alpha_i^r + (1-\alpha_i)^r)$, and $T_p (X_1 + X_2) = \beta x$ with $\beta = (\alpha_1 + \alpha_2)^r / (\alpha_3^r + (1-\alpha_3)^r)$. 0 < r < 1 implies $\alpha_1^r + \alpha_2^r > (\alpha_1 + \alpha_2)^r$, and therefore $\beta_1 + \beta_2 \ge (\alpha_1^r + \alpha_2^r) / (\alpha_3^r + (1-\alpha_3)^r) > \beta$. This inequality shows that T_p is not linear. The case 1 runs similarly.

4. Assume that (a) is not fulfilled, p = 2, and T_p is linear. Let $A_i \in \mathcal{A}$, i = 1, 2, 3, be as in 3. For i = 1, 2, 3 put $\lambda_i = \alpha_i/(\alpha_1 + \alpha_2)$. We will show

$$\lambda_1 \|x_1\|^2 + \lambda_2 \|x_2\|^2 \le \lambda_1 \lambda_2 \|x_1 - x_2\|^2 + \|\lambda_1 x_1 + \lambda_2 x_2\|^2$$

for all $x_1, x_2 \in E$. (2.4)

Define: $c_0 = \inf\{c > 0$: For all $x_1, x_2 \in E$ holds $\lambda_1 ||x_1||^2 + \lambda_2 ||x_2||^2 \leq \lambda_1 \lambda_2 ||x_1 - x_2||^2 + c ||\lambda_1 x_1 + \lambda_2 x_2||^2 \}$. Let $x_1, x_2 \in E$ be given. Take $x_3 = -\lambda_3^{-1}(\lambda_1 x_1 + \lambda_2 x_2)$ and $X = \sum_{i=1}^3 x_i \mathbf{1}_{A_i}$. Then (2.3) and the linearity of T_2 imply $T_2 X = 0$. For $\alpha \in (0, 1]$ put $y_\alpha = \alpha(\lambda_1 x_1 + \lambda_2 x_2)$. According to (2.1), we have $\sum_{i=1}^3 \lambda_i ||x_i||^2 \leq \sum_{i=1}^3 \lambda_i ||x_i - y_\alpha||^2$. This is equivalent to:

$$\lambda_{1} \|x_{1}\|^{2} + \lambda_{2} \|x_{2}\|^{2} \leq \lambda_{1} \|x_{1} - y_{\alpha}\|^{2} + \lambda_{2} \|x_{2} - y_{\alpha}\|^{2} + (2\alpha + \alpha^{2}\lambda_{3}) \|\lambda_{1}x_{1} + \lambda_{2}x_{2}\|^{2}.$$
(*)

Putting $\alpha = 1$ in (*), we obtain $\lambda_1 ||x_1||^2 + \lambda_2 ||x_2||^2 \le \lambda_1 \lambda_2 ||x_1 - x_2||^2 + \lambda_2 ||x_1 - x_2||^2$

 $(2 + \lambda_3) \|\lambda_1 x_1 + \lambda_2 x_2\|^2$. Hence, $c_0 \leq 2 + \lambda_3 < \infty$. Starting from (*) and using the definition of c_0 , we can write

$$\begin{split} \lambda_1 \|x_1\|^2 + \lambda_2 \|x_2\|^2 \\ & \leq \lambda_1 \lambda_2 \|(x_1 - y_\alpha) - (x_2 - y_\alpha)\|^2 \\ & + c_0 \|\lambda_1 (x_1 - y_\alpha) + \lambda_2 (x_2 - y_\alpha)\|^2 + (2\alpha + \alpha^2 \lambda_3) \|\lambda_1 x_1 + \lambda_2 x_2\|^2 \\ & = \lambda_1 \lambda_2 \|x_1 - x_2\|^2 + (c_0 (1 - \alpha)^2 + 2\alpha + \alpha^2 \lambda_3) \|\lambda_1 x_1 + \lambda_2 x_2\|^2. \end{split}$$

Whence we have for every $\alpha \in (0, 1]$:

$$c_0 \leq c_0(1-\alpha)^2 + 2\alpha + \alpha^2 \lambda_3.$$

This implies $c_0 \leq 1$, which proves (2.4). The fact that E is a Hilbert space, if (2.4) is fulfilled, is stated in the following proposition.

PROPOSITION 2.5. If (2.4) is fulfilled for some $\lambda_i > 0$ with $\lambda_1 + \lambda_2 = 1$, then E is a Hilbert space.

Proof. We show first

$$\|x_1\|^2 + \|x_2\|^2 = \|\gamma_1 x_1 + \gamma_2 x_2\|^2 + \|\gamma_2 x_1 - \gamma_1 x_2\|^2$$

for all $x_1, x_2 \in E$; with $\gamma_i = \lambda_i^{1/2}$ for $i = 1, 2$. (2.5)

If $x_1, x_2 \in E$ are given, then using (2.4), we obtain

$$||x_1||^2 + ||x_2||^2 = \lambda_1 ||\gamma_1^{-1}x_1||^2 + \lambda_2 ||\gamma_2^{-1}x_2||^2$$

$$\leq \lambda_1 \lambda_2 ||\gamma_1^{-1}x_1 - \gamma_2^{-1}x_2||^2 + ||\lambda_1 \gamma_1^{-1}x_1 + \lambda_2 \gamma_2^{-1}x_2||^2$$

$$= ||\gamma_1 x_1 + \gamma_2 x_2||^2 + ||\gamma_2 x_1 - \gamma_1 x_2||^2.$$

An application of this inequality to $y_1 = \gamma_1 x_1 + \gamma_2 x_2$ and $y_2 = \gamma_2 x_1 - \gamma_1 x_2$ instead of x_1 and x_2 , yields the converse inequality.

Next we prove

$$\|x - y\| = \|x + y\| \Rightarrow \|x - \gamma y\| = \|x + \gamma y\| \quad \text{for all } x, y \in E;$$

with $\gamma = (1 + \gamma_1)/(1 - \gamma_1).$ (2.6)

If $x, y \in E$ are given and ||x - y|| = ||x + y||, then we apply (2.5) with $x_1 = x - y$ and $x_2 = (1 - \gamma_1) \gamma_2^{-1} x + (1 + \gamma_1) \gamma_2^{-1} y$. After a short computation we obtain $||x - \gamma y|| = ||x + \gamma y||$. Since $\gamma > 0$, $\gamma \neq 1$, (2.6) implies that E is a Hilbert space, according to [5] (I_1) .

The following corollary is an immediate consequence of Theorem 2.2 and (2.3).

COROLLARY 2.7. $T_p X = \int X d\mu$ for every $X \in L_p(\mu, E)$, if and only if

- (a) Ω is a μ -atom, or the union of 2 μ -atoms and p = 2, or
- (b) p = 2 and E is a Hilbert space.

In the general case the relation between the Bochner integral and best approximation by a constant can be stated as follows.

Remark 2.8. If *E* is a strictly convex Banach space, then the Bochner integral is the unique linear continuous operator $T: L_1(\mu, E) \to E$, which fulfills

$$\int ||X - TX||^2 d\mu = \inf \left\{ \int ||X - y||^2 d\mu \colon y \in E \right\}$$

for every μ -measurable $X: \Omega \to E$, which attains only 2 values.

Proof. From (2.3) and the linearity of T follows $TX = \int X d\mu$ for every finitely valued μ -measurable function $X: \Omega \to E$. Then $TX = \int X d\mu$ for every $X \in L_1(\mu, E)$, since T is continuous.

References

- M. H. DE GROOT AND M. M. RAO, "Multidimensional Information Inequalities," Proc. Internat. Symp. on Multivariate Analysis, pp. 287–313, Academic Press, New York, 1968.
- 2. N. HERRNDORF, Best Φ and N_{ϕ} -approximants in Orlicz spaces of vector valued functions, Z. Wahrsch. verw. Gebiete **58** (1981), 309–329.
- 3. J. L. KELLEY, "General Topology," Van Nostrand, Princeton, 1955.
- 4. D. LANDERS AND L. ROGGE, On linearity of s-predictors, Ann. Probab. 7 (1979), 887-892.
- 5. E. R. LORCH, On some implications which characterize Hilbert space, Ann. of Math. 49 (1948), 523-532.
- M. RAO, Inference in stochastic processes IV: Predictors and projections, Indian J. Statist. 36A (1974), 63-120.
- 7. K. YOSIDA AND E. HEWITT, Finitely additive measures, *Trans. Amer. Math. Soc.* 72 (1952), 46–66.