Approximation of Vector-Valued Random Variables by Constants

N. Herrndorf *
Mathematisches Institut der Universität Köln, D-5000 Cologne 41, West Germany
Communicated by Oved Shisha

Received March 27, 1981; revised March 18, 1982

Abstract

Let E be a Banach space. If the closed balls in E are a compact system, then for every E-valued strongly μ-measurable random variable X, and every nondecreasing $\Phi:[0, \infty) \rightarrow[0, \infty)$, there exists an $x \in E$ minimizing $\int \Phi(\|X-x\|) d \mu$. If $\Phi(x)=x^{p}, 1<p<\infty$, and E is strictly convex, then the operator T_{p}, assigning to each X the best approximating $x \in E$, is linear, if and only if the underlying probability space consists of at most 2 atoms, or $p=2$ and E is a Hilbert space.

Introduction

Throughout this paper $(\Omega, \mathscr{A}, \mu)$ denotes a probability space. $(E,\| \|)$ is a Banach space; for $x \in E$ and $r \geqslant 0, B(x, r)$ is the closed ball centered at x with radius r. For $1 \leqslant p<\infty, L_{p}(\mu, E)$ denotes the space of equivalence classes of strongly μ-measurable E-valued functions with $\int\|X\|^{p} d \mu<\infty$. In the first section, Φ is always a nondecreasing continuous function with $\Phi(0)=0, \Phi:[0, \infty) \rightarrow[0, \infty)$. A sufficient condition for the existence of solutions of the following approximation problem will be given: If $X: \Omega \rightarrow E$ is a strongly μ-measurable function, find $x \in E$ such that $\int \Phi(\|X-x\|) d \mu=$ $\inf \left\{\int \Phi(\|X-y\|) d \mu: y \in E\right\}$. For convex Φ this is a special case of a more general approximation problem considered in [1] and [2]. The results for the special case in this paper are valid for a larger class of Banach spaces E, including L_{1}-spaces, and the loss function Φ is more general. In the second section we restrict ourselves to strictly convex Banach spaces and $\Phi(x)=|x|^{p}, 1<p<\infty$. Except for rather trivial probability spaces the operator $T_{p}: L_{p}(\mu, E) \rightarrow E$, assigning to each $X \in L_{p}(\mu, E)$ the best approximating constant, is linear, if and only if $p=2$ and E is a Hilbert space. For $E=\mathbb{R}$ the linearity of projection operators with respect to $\left\|\|_{p}\right.$ has been

[^0]investigated in $[4,6]$. The additional result in this paper is: Linearity of T_{2} implies that E is a Hilbert space. Finally, the relation between the Bochner integral and the approximation by a constant is discussed.

1. Existence of Best Approximants

The following facts about compact systems of sets will be needed. A system \mathscr{C} of subsets of a set M is called compact, if \mathscr{C} has the finite intersection property, i.e., if $\mathscr{C}_{0} \subset \mathscr{C}$ and $\cap \mathscr{C}_{1} \neq \varnothing$ for every finite subsystem of \mathscr{C}_{0}, then $\cap \mathscr{C}_{0} \neq \varnothing$. The following remark is an easy consequence of a theorem of Alexander [3, Theorem 5.6].

Remark 1.1. If \mathscr{C} is a compact system, then the system $\tau(\mathscr{C})$ of arbitrary intersections of finite unions of elements of \mathscr{C} is the system of closed sets of a topology on M. Endowed with this topology, M is a quasicompact space, i.e., $\tau(\mathscr{C})$ is a compact system.

A Banach space is said to have the intersection property (IP), if $\{B(x, r)$: $x \in E, r>0\}$ is a compact system. The following theorem shows that (IP) is a sufficient condition for the existence of best approximants.

Theorem 1.2. Let $(\Omega, \mathscr{A}, \mu)$ be a probability space, E a Banach space with $(I P), \Phi:[0, \infty) \rightarrow[0, \infty)$ a nondecreasing continuous function with $\Phi(0)=0$. For every strongly μ-measurable function $X: \Omega \rightarrow E$, there exists $x \in E$ with $\int \Phi(\|X-x\|) d \mu=\inf \left\{\int \Phi(\|X-y\|) d \mu: y \in E\right\}$.

Proof. Let $e=\lim _{t \rightarrow \infty} \Phi(t)$. W.l.g. we assume that $d:=$ $\inf \left\{\int \Phi(\| X-y| |) d \mu: y \in E\right\}<e$. Choose $\varepsilon>0$ such that $(1-\varepsilon)(e-\varepsilon)>d$, if $e<\infty,(1-\varepsilon) \varepsilon^{-1}>d$, if $e=\infty$. Choose $K>0$ such that $\mu\{\|X\| \leqslant K\} \geqslant$ $1-\varepsilon$, and $M>K$, such that $\Phi(M-K) \geqslant e-\varepsilon$, if $e<\infty, \Phi(M-K) \geqslant \varepsilon^{-1}$, if $e=\infty$. For $y \in E$ with $\|y\|>M$ holds $\int \Phi(\|X-y\|) d \mu \geqslant$ $(1-\varepsilon) \Phi(M-K)>d$. Therefore $\inf \left\{\int \Phi(\|X-y\|) d \mu: y \in B(0, M)\right\}=d$. Let τ be the coarsest topology on $B(0, M)$ with all $B(x, r) \cap B(0, M), x \in E$, $r>0$, as closed sets. Since (IP) is fulfilled and, according to $1.1,(B(0, M), \tau)$ is quasi-compact. We will show now that the function $G: B(0, M) \rightarrow[0, \infty]$ with $G(x)=\int \Phi(\|X-x\|) d \mu$ is lower semicontinuous (l.s.c.). Put $G_{L}(x)=$ $\int \Phi(\|X-x\|) 1_{\{\| x| | \leqslant L\}} d \mu$ for $L>0$. Then $G(x)=\sup \left\{G_{L}(x): L>0\right\}$, and it suffices to prove that $G_{L}(x)$ is l.s.c. for $L>0$ fixed. The sets $B(x, r) \cap$ $B(0, M), x \in E, r>0$ are closed under τ, whence the function $x \rightarrow\|x+y\|$ is l.s.c. for every $y \in E$. If $\alpha_{i}>0$ and $x_{i} \in E, i \in \mathbb{N}$, are given, then $x \rightarrow$ $\sum_{i \in \mathbb{N}} \alpha_{i} \Phi\left(\left\|x_{i}-x\right\|\right)$ also is l.s.c. . Thus for every countably valued random variable Y the function $G_{L, Y}(x)=\int \Phi(\|Y-x\|) 1_{\{\|X\| \leqslant L \mid} d \mu$ is l.s.c. . This proves the theorem for countably-valued X. For general X we have to show $\left\{x \in B(0, M): G_{L}(x)>a\right\}$ is τ-open for $a \in \mathbb{R}$, so assume $G_{L}\left(x_{0}\right)=a+\varepsilon$ for
some $x_{0} \in B(0, M), \varepsilon>0$. Since Φ is uniformly continuous on compact intervals, there exists $\delta>0$ such that $0 \leqslant t \leqslant L+M,|t-s| \leqslant \delta$ implies $|\Phi(t)-\Phi(s)|<\varepsilon / 2$. There exists a countably valued random variable $Y: \Omega \rightarrow E \quad$ with $\quad\|X-Y\| \leqslant \delta \quad \mu$-a.e. . Then follows $\quad \mid \Phi(\|X-x\|)-$ $\Phi(\|Y-x\|) \mid<\varepsilon / 2$ on the set $\{\omega \in \Omega:\|X(\omega)\| \leqslant L\}$ for all $x \in B(0, M)$. Thus, $\left|G_{L, Y}(x)-G_{L}(x)\right|<\varepsilon / 2$ for all $x \in B(0, M)$. Hence: $\{x \in B(0, M)$: $\left.G_{L}(x)>a\right\} \supset\left\{x \in B(0, M): G_{L, Y}(x)>a+\varepsilon / 2\right\}$, and this last set is open and contains x_{0}.

It follows from the above proof that the condition of 1.2 can be weakened for the case of a countably- or finite-valued random variable X.

Remark 1.3. Let $I=\mathbb{N}$, or $I=\{1, \ldots, n\}$ for some $n \geqslant 2$. Let $X=$ $\sum_{i \in I} x_{i} 1_{A_{i}}$ with $x_{i} \in E, A_{i} \in \mathscr{A}$. If $\mathscr{C}\left(\left(x_{i}\right)_{i \in I}\right)=\left\{B\left(x_{i}, r\right): i \in I, r>0\right\}$ is a compact system, then there exists $x \in E$ with $\int \Phi(\|X-x\|) d \mu=$ $\inf \left\{\int \Phi(\|X-y\|) d \mu: y \in E\right\}$.

In the following remarks the assertions of 1.2 and 1.3 are discussed in some special situations. The case $n=2$ in 1.3 is simple.

Remark 1.4. For $x_{1}, x_{2} \in E \mathscr{C}\left(x_{1}, x_{2}\right)$ is always a compact system. Hence, for $\alpha_{i}>0$ and every Φ there exists $x \in E$ such that $\alpha_{1} \Phi\left(\left\|x_{1}-x\right\|\right)+$ $\alpha_{2} \Phi\left(\left\|x_{2}-x\right\|\right)=\inf \left\{\alpha_{1} \Phi\left(\left\|x_{1}-y\right\|\right)+\alpha_{2} \Phi\left(\left\|x_{2}-y\right\|\right): y \in E\right\}$. Moreover, it is easy to verify that x can be taken as $\lambda x_{1}+(1-\lambda) x_{2}$ with some $\lambda \in[0,1]$.

The following example shows that the situation is more complicated if $n \geqslant 3$.

EXAMPLE 1.5. Consider the space \mathbb{R}^{3} endowed with the norm $\left\|\left(a_{i}\right)\right\|=$ $\sum_{i=1}^{3}\left|a_{i}\right|$. Set $u_{1}=(0,0,0), u_{2}=(1,-1,0), u_{3}=(1,0,-1)$. Then elementary calculus implies that $u=(1,0,0)$ is the unique solution of $\sum_{i=1}^{3}\left\|u_{i}-u\right\|^{2}=$ $\inf \left\{\sum_{i=1}^{3}\left\|u_{i}-v\right\|^{2}: v \in \mathbb{R}^{3}\right\}$. Let $H=\left\{\left(a_{i}\right) \in \mathbb{R}^{3}: \sum_{i=1}^{3} a_{i}=0\right\}$. It is obvious that there exists $u^{\prime} \in H$ with $\sum_{i=1}^{3}\left\|u_{i}-u^{\prime}\right\|^{2}=\inf \left\{\sum_{i=1}^{3}\left\|u_{i}-v\right\|^{2}: v \in H\right\}$. Since $u \notin H$, holds $d:=\sum_{i=1}^{3}\left\|u_{i}-u^{\prime}\right\|^{2}>3=\sum_{i=1}^{3}\left\|u_{i}-u\right\|^{2}$. Choose $\varepsilon>0$ with $3(1+\varepsilon)^{2}<d$. After these preliminary remarks, we define a Banach space E as follows: Let $c_{1}=c_{2}=c_{3}=1$, and $\left(c_{k}\right)_{k \geqslant 4}$ be a bounded strictly increasing sequence with $c_{4}=\varepsilon^{-1}$. Define $E=\left\{\left(a_{i}\right) \in l_{1}: \sum_{i \in \mathbb{N}} a_{i} c_{i}=0\right\}$, and $\left\|\left(a_{i}\right)\right\|=\sum_{i \in \mathbb{N}}\left|a_{i}\right|$. The boundedness of $\left(c_{i}\right)$ implies that E is a closed subspace of l_{1}. Let $e_{j}, j \in \mathbb{N}$, be the standard basis of l_{1}. Define $x_{i} \in E$, $i=1,2,3$ by $x_{1}=0, x_{2}=e_{1}-e_{2}, x_{3}=e_{1}-e_{3}$. Assume that there exists $x=\left(a_{i}\right) \in E$ with $\sum_{i=1}^{3}\left\|x_{i}-x\right\|^{2}=\inf \left\{\sum_{i=1}^{3}\left\|x_{i}-y\right\|^{2}: y \in E\right\}$. If $a_{i}=0$ for all $i \geqslant 4$, then $\quad \sum_{i=1}^{3}\left\|x_{i}-x\right\|^{2} \geqslant d$, but $y=e_{1}-\varepsilon e_{4} \in E$ fulfills $\sum_{i=1}^{3}\left\|x_{i}-y\right\|^{2}=3(1+\varepsilon)^{2}<d$. Therefore, there exists some $j \geqslant 4$ with $a_{j} \neq 0$. Then $\quad z=x-a_{j} e_{j}+a_{j} c_{j} c_{j+1}^{-1} e_{j+1} \in E \quad$ and $\quad \sum_{i=1}^{3}\left\|x_{i}-z\right\|^{2}<$ $\sum_{i=1}^{3}\left\|x_{i}-x\right\|^{2}$, since $\left(c_{i}\right)_{i>4}$ is strictly increasing. Hence there exists no $x \in E$ with $\sum_{i=1}^{3}\left\|x_{i}-x\right\|^{2}=\inf \left\{\sum_{i=1}^{3}\left\|x_{i}-y\right\|^{2}: y \in E\right\}$. According to 1.3, $\mathscr{C}\left(x_{1}, x_{2}, x_{3}\right)$ is not a compact system in this example.

The assumption " $\mathscr{C}\left(x_{1}, \ldots, x_{n}\right)$ compact for every $n \geqslant 2$ and all $x_{1}, \ldots, x_{n} \in E "$ is not strong enough to imply the existence of best approximants for countably valued random variables.

Example 1.6. If $E=c_{0}$, the system $\mathscr{C}\left(x_{1}, \ldots, x_{n}\right)$ is always a compact system, but the system of all closed balls in c_{0} is not compact. Take $\Omega=\mathbb{N} \cup-\mathbb{N}$ and define a probability measure $\mu \mid \mathscr{P}(\Omega)$ by $\mu(\pm n)=2^{-n-1}$. If $X: \Omega \rightarrow c_{0}$ is defined by $X(\pm n)= \pm e_{1}+2 e_{n}, n \in \mathbb{N}$, and Φ is a strictly convex function, then there exists no $x \in c_{0}$ with $\int \Phi(\|X-x\|) d \mu=$ $\inf \left\{\int \Phi(\|X-y\|) d \mu: y \in c_{0}\right\}$.

The following remark shows that there are many spaces, which fulfill (IP).
Remark 1.7. (i) Every dual space has (IP).
(ii) Every weak-*-closed subspace of a dual space has (IP).
(iii) If there exists a linear projection $\pi: E^{* *} \rightarrow E$ with $\|\pi\| \leqslant 1$, then E has (IP).
(iv) For every σ-finite measure space $(\Sigma, \mathscr{F}, v) L_{1}(v, \mathbb{R})$ has $(I P)$.

Proof. (i) and (ii) follow from the weak-*-compactness of closed balls in dual spaces.
(iii) If $\mathscr{C}=\left\{B\left(x_{i}, r_{i}\right)\right\}$ is a system of closed balls in E, then define $B^{\prime}\left(x_{i}, r_{i}\right)=\left\{y \in E^{* *}:\left\|x_{i}-y\right\| \leqslant r_{i}\right\}$. If every finite subsystem of \mathscr{C} has nonvoid intersection, then by (i) there exists $x^{\prime} \in \cap B^{\prime}\left(x_{i}, r_{i}\right)$. Then $x=$ $\pi\left(x^{\prime}\right) \in \cap B\left(x_{i}, r_{i}\right)$.
(iv) For $E=L_{1}(v, \mathbb{R}) E^{* *}$ can be identified with the space of bounded additive set functions on \mathscr{F}, which vanish on μ-null sets [7, Th. 2.3]. For every $\rho \in E^{* *}$ let $\pi(\rho)$ be a v-density of the σ-additive part of the Yoshida-Hewitt decomposition of ρ [7, Th. 1.23]. Then $\pi: E^{* *} \rightarrow E$ is a linear projection with $\|\pi\| \leqslant 1$. Hence (iii) implies (iv).

2. Linearity of Best Approximation with Respect to $\left\|\|_{p}\right.$

In this section we will assume that E is a strictly convex Banach space, and that (IP) is fulfilled. Then, for every probability space $(\Omega, \mathscr{A}, \mu)$ and every $p \in(1, \infty)$ we define an operator $T_{p}: L_{p}(\mu, E) \rightarrow E$ by

$$
\begin{equation*}
\int\left\|X-T_{p} X\right\|^{p} d \mu=\inf \left\{\int\|X-y\|^{p} d \mu: y \in E\right\} \tag{2.1}
\end{equation*}
$$

Since E is strictly convex and Φ is a strictly convex function for every $p \in(1, \infty), T_{p} X$ is uniquely determined by (2.1).

THEOREM 2.2. $\quad T_{p}$ is linear if and only if
(a) Ω is the union of 2μ-atoms, or
(b) $p=2$ and E is a Hilbert space.

Proof. 1. Let $A_{i} \in \mathscr{A}, i=1,2$, be disjoint sets with $\Omega=A_{1} \cup A_{2}, \alpha_{i}=$ $P\left(A_{i}\right)$, and $x_{i} \in E$ for $i=1,2$. Using 1.4 and differential calculus, we obtain

$$
\begin{gather*}
T_{p}\left(x_{1} 1_{A_{1}}+x_{2} 1_{A_{2}}\right)=\beta_{1} x_{1}+\beta_{2} x_{2} \\
\text { with } \quad \beta_{i}=\alpha_{i}^{r} /\left(\alpha_{1}^{r}+\alpha_{2}^{r}\right) \quad i=1,2, \quad r=(p-1)^{-1} \tag{2.3}
\end{gather*}
$$

(2.3) clearly implies that T_{p} is linear, if (a) is fulfilled.
2. If (b) is fulfilled, then T_{p} is linear, since $T_{p}=T_{2}$ is a projection on a closed subspace of the Hilbert space $L_{2}(\mu, E)$.
3. Assume that (a) is not fulfilled and $p>2$. There exist disjoint sets $A_{i} \in \mathscr{A}, \quad i=1,2,3$, with $\alpha_{i}=\mu\left(A_{i}\right)>0 \quad$ and $\Omega=A_{1} \cup A_{2} \cup A_{3}$. Put $r=(p-1)^{-1}$. W.l.g. we assume $\alpha_{3}^{r}+\left(1-\alpha_{3}\right)^{r} \geqslant \alpha_{i}^{r}+\left(1-\alpha_{i}\right)^{r}$ for $i=1,2$. Take an arbitrary $x \in E-\{0\}$ and define $X_{i}=x 1_{A_{i}}$ for $i=1,2$. According to (2.3) we have $T_{p} X_{i}=\beta_{i} x, i=1$, 2, with $\beta_{i}=\alpha_{i}^{r} /\left(\alpha_{i}^{r}+\left(1-\alpha_{i}\right)^{r}\right)$, and $T_{p}\left(X_{1}+X_{2}\right)=\beta x$ with $\beta=\left(\alpha_{1}+\alpha_{2}\right)^{r} /\left(\alpha_{3}^{r}+\left(1-\alpha_{3}\right)^{r}\right) . \quad 0<r<1$ implies $\alpha_{1}^{r}+\alpha_{2}^{r}>\left(\alpha_{1}+\alpha_{2}\right)^{r}$, and therefore $\beta_{1}+\beta_{2} \geqslant\left(\alpha_{1}^{r}+\alpha_{2}^{r}\right) /\left(\alpha_{3}^{r}+\left(1-\alpha_{3}\right)^{r}\right)>\beta$. This inequality shows that T_{p} is not linear. The case $1<p<2$ runs similarly.
4. Assume that (a) is not fulfilled, $p=2$, and T_{p} is linear. Let $A_{i} \in \mathscr{A}$, $i=1,2,3$, be as in 3 . For $i=1,2,3$ put $\lambda_{i}=\alpha_{i} /\left(\alpha_{1}+\alpha_{2}\right)$. We will show

$$
\begin{array}{r}
\lambda_{1}\left\|x_{1}\right\|^{2}+\lambda_{2}\left\|x_{2}\right\|^{2} \leqslant \lambda_{1} \lambda_{2}\left\|x_{1}-x_{2}\right\|^{2}+\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2} \\
\text { for all } x_{1}, x_{2} \in E . \tag{2.4}
\end{array}
$$

Define: $c_{0}=\inf \left\{c>0\right.$: For all $x_{1}, x_{2} \in E$ holds $\lambda_{1}\left\|x_{1}\right\|^{2}+\lambda_{2}\left\|x_{2}\right\|^{2} \leqslant$ $\left.\lambda_{1} \lambda_{2}\left\|x_{1}-x_{2}\right\|^{2}+c\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2}\right\}$. Let $x_{1}, x_{2} \in E$ be given. Take $x_{3}=$ $-\lambda_{3}^{-1}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)$ and $X=\sum_{i=1}^{3} x_{i} 1_{A_{i}}$. Then (2.3) and the linearity of T_{2} imply $T_{2} X=0$. For $\alpha \in(0,1]$ put $y_{\alpha}=\alpha\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)$. According to (2.1), we have $\sum_{i=1}^{3} \lambda_{i}\left\|x_{i}\right\|^{2} \leqslant \sum_{i=1}^{3} \lambda_{i}\left\|x_{i}-y_{\alpha}\right\|^{2}$. This is equivalent to:

$$
\begin{align*}
\lambda_{1}\left\|x_{1}\right\|^{2}+\lambda_{2}\left\|x_{2}\right\|^{2} \leqslant & \lambda_{1}\left\|x_{1}-y_{\alpha}\right\|^{2}+\lambda_{2}\left\|x_{2}-y_{\alpha}\right\|^{2} \\
& +\left(2 \alpha+\alpha^{2} \lambda_{3}\right)\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2} \tag{*}
\end{align*}
$$

Putting $\alpha=1$ in (*), we obtain $\lambda_{1}\left\|x_{1}\right\|^{2}+\lambda_{2}\left\|x_{2}\right\|^{2} \leqslant \lambda_{1} \lambda_{2}\left\|x_{1}-x_{2}\right\|^{2}+$
$\left(2+\lambda_{3}\right)\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2}$. Hence, $c_{0} \leqslant 2+\lambda_{3}<\infty$. Starting from ($\left.*\right)$ and using the definition of c_{0}, we can write

$$
\begin{aligned}
\lambda_{1} \| x_{1} & \left\|^{2}+\lambda_{2}\right\| x_{2} \|^{2} \\
& \leqslant \\
& \lambda_{1} \lambda_{2}\left\|\left(x_{1}-y_{\alpha}\right)-\left(x_{2}-y_{\alpha}\right)\right\|^{2} \\
& +c_{0}\left\|\lambda_{1}\left(x_{1}-y_{\alpha}\right)+\lambda_{2}\left(x_{2}-y_{\alpha}\right)\right\|^{2}+\left(2 \alpha+\alpha^{2} \lambda_{3}\right)\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2} \\
& =\lambda_{1} \lambda_{2}\left\|x_{1}-x_{2}\right\|^{2}+\left(c_{0}(1-\alpha)^{2}+2 \alpha+\alpha^{2} \lambda_{3}\right)\left\|\lambda_{1} x_{1}+\lambda_{2} x_{2}\right\|^{2} .
\end{aligned}
$$

Whence we have for every $\alpha \in(0,1]$:

$$
c_{0} \leqslant c_{0}(1-\alpha)^{2}+2 \alpha+\alpha^{2} \lambda_{3} .
$$

This implies $c_{0} \leqslant 1$, which proves (2.4). The fact that E is a Hilbert space, if (2.4) is fulfilled, is stated in the following proposition.

Proposition 2.5. If (2.4) is fulfilled for some $\lambda_{i}>0$ with $\lambda_{1}+\lambda_{2}=1$, then E is a Hilbert space.

Proof. We show first

$$
\begin{align*}
& \left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}=\left\|\gamma_{1} x_{1}+\gamma_{2} x_{2}\right\|^{2}+\left\|\gamma_{2} x_{1}-\gamma_{1} x_{2}\right\|^{2} \\
& \quad \text { for all } x_{1}, x_{2} \in E ; \text { with } \gamma_{i}=\lambda_{i}^{1 / 2} \text { for } i=1,2 . \tag{2.5}
\end{align*}
$$

If $x_{1}, x_{2} \in E$ are given, then using (2.4), we obtain

$$
\begin{aligned}
\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2} & =\lambda_{1}\left\|\gamma_{1}^{-1} x_{1}\right\|^{2}+\lambda_{2}\left\|\gamma_{2}^{-1} x_{2}\right\|^{2} \\
& \leqslant \lambda_{1} \lambda_{2}\left\|\gamma_{1}^{-1} x_{1}-\gamma_{2}^{-1} x_{2}\right\|^{2}+\left\|\lambda_{1} \gamma_{1}^{-1} x_{1}+\lambda_{2} \gamma_{2}^{-1} x_{2}\right\|^{2} \\
& =\left\|\gamma_{1} x_{1}+\gamma_{2} x_{2}\right\|^{2}+\left\|\gamma_{2} x_{1}-\gamma_{1} x_{2}\right\|^{2} .
\end{aligned}
$$

An application of this inequality to $y_{1}=\gamma_{1} x_{1}+\gamma_{2} x_{2}$ and $y_{2}=\gamma_{2} x_{1}-\gamma_{1} x_{2}$ instead of x_{1} and x_{2}, yields the converse inequality.

Next we prove

$$
\begin{align*}
\|x-y\|=\|x+y\| \Rightarrow\|x-\gamma y\|= & \|x+\gamma y\| \quad \text { for all } x, y \in E \\
& \text { with } \quad \gamma=\left(1+\gamma_{1}\right) /\left(1-\gamma_{1}\right) . \tag{2.6}
\end{align*}
$$

If $x, y \in E$ are given and $\|x-y\|=\|x+y\|$, then we apply (2.5) with $x_{1}=x-y$ and $x_{2}=\left(1-\gamma_{1}\right) \gamma_{2}^{-1} x+\left(1+\gamma_{1}\right) \gamma_{2}^{-1} y$. After a short computation we obtain $\|x-\gamma y\|=\|x+\gamma y\|$. Since $\gamma>0, \gamma \neq 1$, (2.6) implies that E is a Hilbert space, according to [5] (I_{1}).

The following corollary is an immediate consequence of Theorem 2.2 and (2.3).

Corollary 2.7. $\quad T_{p} X=\int X d \mu$ for every $X \in L_{p}(\mu, E)$, if and only if
(a) Ω is a μ-atom, or the union of 2μ-atoms and $p=2$, or
(b) $p=2$ and E is a Hilbert space.

In the general case the relation between the Bochner integral and best approximation by a constant can be stated as follows.

Remark 2.8. If E is a strictly convex Banach space, then the Bochner integral is the unique linear continuous operator $T: L_{1}(\mu, E) \rightarrow E$, which fulfills

$$
\int\|X-T X\|^{2} d \mu=\inf \left\{\int\|X-y\|^{2} d \mu: y \in E\right\}
$$

for every μ-measurable $X: \Omega \rightarrow E$, which attains only 2 values.
Proof. From (2.3) and the linearity of T follows $T X=\int X d \mu$ for every finitely valued μ-measurable function $X: \Omega \rightarrow E$. Then $T X=\int X d \mu$ for every $X \in L_{1}(\mu, E)$, since T is continuous.

References

1. M. H. De Groot and M. M. Rao, "Multidimensional Information Inequalities," Proc. Internat. Symp. on Multivariate Analysis, pp. 287-313, Academic Press, New York, 1968.
2. N. Herrndorf, Best Φ - and N_{Φ}-approximants in Orlicz spaces of vector valued functions, Z. Wahrsch. verw. Gebiete 58 (1981), 309-329.
3. J. L. Kelley, "General Topology," Van Nostrand, Princeton, 1955.
4. D. Landers and L. Rogge, On linearity of s-predictors, Ann. Probab. 7 (1979), 887-892.
5. E. R. Lorch, On some implications which characterize Hilbert space, Ann. of Math. 49 (1948), 523-532.
6. M. M. Rao, Inference in stochastic processes IV: Predictors and projections, Indian J. Statist. 36A (1974), 63-120.
7. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.

[^0]: * Acknowledgement: The author thanks the referee for his remarks and suggestions.

