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Let E be a Banach space. If the closed balis in E are a compact system, then for
every E-valued strongly #-measurable random variable X, and every nondecreasing
@: [0, 0)— [0, ), there exists an x € E minimizing [ (X —x|)de. If
P(x)=x", 1 <p< o, and E is strictly convex, then the operator T, assigning to
each X the best approximating x € E, is linear, if and only if the underlying
probability space consists of at most 2 atoms, or p =2 and E is a Hilbert space.

INTRODUCTION

Throughout this paper (£, s/, u) denotes a probability space. (E, | ||) is a
Banach space; for x € E and r > 0, B(x, r) is the closed ball centered at x
with radius r. For 1 p < o0, L,(4, E) denotes the space of equivalence
classes of strongly u-measurable E-valued functions with [ || X||” du < co. In
the first section, @ is always a nondecreasing continuous function with
®(0)=0, @:[0,0)— [0, ). A sufficient condition for the existence of
solutions of the following approximation problem will be given: If X: 2 > E
is a strongly u-measurable function, find x € E such that [ @(| X —x||) du =
inf{f @(|X —y||)du:y € E}. For convex & this is a special case of a more
general approximation problem considered in [1] and [2]. The results for the
special case in this paper are valid for a larger class of Banach spaces E,
including L,-spaces, and the loss function @ is more general. In the second
section we restrict ourselves to strictly convex Banach spaces and
@D(x)=|x|?, 1 <p < oo. Except for rather trivial probability spaces the
operator T,: L,(u, E)— E, assigning to each X € L,(u, E) the best approx-
imating constant, is linear, if and only if p =2 and E is a Hilbert space. For
E =R the linearity of projection operators with respect to || ||, has been
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investigated in {4, 6]. The additional result in this paper is: Linearity of T,
implies that E is a Hilbert space. Finally, the relation between the Bochner
integral and the approximation by a constant is discussed.

1. EXISTENCE OF BEST APPROXIMANTS

The following facts about compact systems of sets will be needed. A
system & of subsets of a set M is called compact, if & has the finite inter-
section property, i.e., if €, % and () %, #+ @ for every finite subsystem of
%,, then ()%, &. The following remark is an easy consequence of a
theorem of Alexander [3, Theorem 5.6].

Remark 1.1. If & is a compact system, then the system 7(%’) of
arbitrary intersections of finite unions of elements of % is the system of
closed sets of a topology on M. Endowed with this topology, M is a quasi-
compact space, i.e., 7(¥’) is a compact system.

A Banach space is said to have the intersection property (IP), if {B(x,r):
x € E,r> 0} is a compact system. The following theorem shows that (IP) is
a sufficient condition for the existence of best approximants.

THEOREM 1.2, Let (2, %/ ,u) be a probability space, E a Banach space
with (IP), ®:{0, 0)— [0, 00) a nondecreasing continuous function with
@(0)=0. For every strongly u-measurable function X: Q2 - E, there exists
x € E with | ®(| X — x|)) du = inf{[ (X —y]) du: y € E}.

Proof. Let e=lim,, @(). Wlg. we assume that d:=
inf{[ @(|X —y||) du: y € E} < e. Choose ¢ > 0 such that (1 —¢)(e—¢)>d,
if e< oo, (1—¢)e™ "' >d, if e= 0. Choose K > 0 such that u{||X|| <K} >
1 —¢, and M > K, such that ®(M —K)>e—¢,ife < o0, DM —K) 2 e~ !,
if e=ow. For y€EE with |y|>M holds [&(X—yp|)du>
(1 — &) ®(M — K) > d. Therefore inf{| &(|X — y|) du: y € B(0, M)} = d. Let
7 be the coarsest topology on B(0, M) with all B(x,r)NB(0,M), xEE,
r > 0, as closed sets. Since (IP) is fulfilled and, according to 1.1, (B(0, M), )
is quasi-compact. We will show now that the function G: B(0, M) - [0, o]
with G(x)= [ (| X — x|)) du is lower semicontinuous (Ls.c.). Put G;(x)=
[ @ X —x]|) Lywj<rydu for L > 0. Then G(x)=sup{G,(x):L >0}, and it
suffices to prove that G,(x) is lLs.c. for L > 0 fixed. The sets B(x,r)M
B(0, M), x €EE, r > 0 are closed under 7, whence the function x - ||x + y|| is
ls.c. for every yEE. If a;>0 and x;€EE, i€ N, are given, then x -
3 ien @ P(l|x; — x|} also is Ls.c.. Thus for every countably valued random
variable Y the function G, ,(x)={®(|Y —x||) 1y, d is Ls.c.. This
proves the theorem for countably-valued X. For general X we have to show
{x € B(0, M): G,(x) > a} is 7-open for a € R, so assume G,(x,)=a + ¢ for
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some x, € B(0, M), £¢> 0. Since @ is uniformly continuous on compact
intervals, there exists 6> 0 such that 0L+ M, |t—s|<d implies
|®(¢) — D(s)] < ¢/2. There exists a countably valued random variable
Y:Q-E with |[X—Y|<d pae. Then follows |P(|X—x]|)—
?D(|Y —x]|)| <&/2 on the set {w€ Q:||X(w)| <L} for all x€& B0, M).
Thus, |G, y(x)—G,(x) <¢&/2 for all x € B(0,M). Hence: {x € B(0,M):
G,(x)> a} o {x € B(0,M): G, y(x) > a + ¢/2}, and this last set is open and
contains Xx,.

It follows from the above proof that the condition of 1.2 can be weakened
for the case of a countably- or finite-valued random variable X.

Remark 1.3. Let I=N, or I={l,.,n} for some n>2. Let X=
2ierXil,, with x, € E, 4, € . If €((x;);e,) = {Blx;,r):i€ELr >0} is a
compact system, then there exists xEE with [@(X—x|)du=
inf{[ ®(1X — yl)) du: y € E}.

In the following remarks the assertions of 1.2 and 1.3 are discussed in
some special situations. The case n =2 in 1.3 is simple.

Remark 1.4. For x,,x,€F #(x,,x,) is always a compact system.
Hence, for a; > 0 and every @ there exists x € E such that a, &(||x, — x||) +
a,®(|x, — x||) = inf{a, ®(jx, — yl) + &, @(|x, — y[)): » € E}. Moreover, it is
easy to verify that x can be taken as Ax, + (1 — 1) x, with some 4 € [0, 1].

The following example shows that the situation is more complicated if
n>3.

ExampLE 1.5. Consider the space R* endowed with the norm ||(a,)|| =
33 . la;l. Set u, = (0,0,0), u, = (1,—1,0), u; = (1,0, —1). Then elementary
calculus implies that u = (1 0,0) is the unique solution of };_, [lu; — u||* =
inf{3"}_, llu;—v]|>: v € R*}. Let H={(a;) € R*:Y}_, a;=0}. It is obvious
that there exists u’ € H with Y2_ |lu,— u'||* =inf{3}_, llu; — v||*: v € H}.
Since u &€ H, holds d := Y"}_, llu;—u'||* > 3=Y}_,/lu; — ul|>. Choose ¢ > 0
with 3(1 +¢)? < d. After these preliminary remarks, we define a Banach
space E as follows: Let ¢, =c,=c; =1, and (c;),;, be a bounded strictly
increasing sequence with ¢, =& ~'. Define E = {(a;) € /,: X ;ena;¢; = 0}, and
@)l =X ;enla;l. The boundedness of (c,) implies that E is a closed
subspace of /,. Let ¢;, j€N, be the standard basis of /,. Define x;, € E,
i=1,2,3 by x,=0, x,=e, —e,, x;=¢€,—e;. Assume that there exists
x=(a;) €E with }}_, |lx; — x|* =inf{3}"}_ lHx —yH2 VEE} If a;=0 for
all i>4, then XY} _||lx;—x||*>d, but y=e —ce,€E (fulfills
3 llxi—y|*=3(1 +€)* <d. Therefore, there exists some j>4 with
a;#0. Then z=x ae+ac,c,+1 ¢, €E and Y x—z|* <
Z, ylIx;—x||, since (c,);54 is strictly increasing. Hence there exists no
x€E with }}_,||x; — x||*=inf{3]_, ||x; — ¥|*: y € E}. According to 1.3,
% (x,,X;,X5) is not a compact system in this example.
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The assumption “#(x,,..,x,) compact for every n>2 and all
Xy X, € E” is not strong enough to imply the existence of best approx-
imants for countably valued random variables.

ExampLE 1.6. If E=c,, the system #(x,,..,x,) is always a compact
system, but the system of all closed balls in ¢, is not compact. Take
2 =NU-—N and define a probability measure u | #(22) by u(xn)=2""""
If X:02-c, is defined by X(+n)= te, +2¢,, n€N, and @ is a strictly
convex function, then there exists no x€c, with [ ®(|X —x|)du=
inf{f @(| X —y||) du: y € c,}.

The following remark shows that there are many spaces, which fulfill (IP).

Remark 1.7. (i) Every dual space has (IP).
(ii) Every weak-x-closed subspace of a dual space has (IP).
(iii) If there exists a linear projection 7: E** — E with ||n]| < 1, then F
has (IP).
(iv) For every o-finite measure space (X, .#,v) L,(v, R) has (IP).

Proof. (i) and (ii) follow from the weak-*-compactness of closed balls in
dual spaces.

(iit) If & ={B(x;,r;)} is a system of closed balls in E, then define
B'(x;,r)={y€EE**:|x;—y||<r} If every finite subsystem of % has
nonvoid intersection, then by (i) there exists x' € () B’(x;,r;). Then x =
n(x') € () Blx;, ry).

(iv) For E=L,(»v,R) E** can be identified with the space of
bounded additive set functions on .#, which vanish on g-null sets |7,
Th. 2.3]. For every p € E** let n(p) be a v-density of the o-additive part of
the Yoshida—Hewitt decomposition of p [7, Th. 1.23]. Then m: E** > E is a
linear projection with ||z} < 1. Hence (iii) implies (iv).

2. LINEARITY OF BEST APPROXIMATION WITH RESPECT TO || ||,

In this section we will assume that E is a strictly convex Banach space,
and that (IP) is fulfilled. Then, for every probability space (2, % ,u) and
every p € (1, o) we define an operator T,: L ,(u, E)— E by

jnx—rpxnﬂdu:inf [1x =yl du:y € EL. (2.1)
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Since E is strictly convex and @ is a strictly convex function for every
PE (1, ), T,X is uniquely determined by (2.1).

THEOREM 2.2. T, is linear if and only if

(a) £ is the union of 2 u-atoms, or
(b) p=2 and E is a Hilbert space.

Proof. 1. Let A,€ &, i=1,2, be disjoint sets with 2 =4,U4,, a;=
P(4;), and x; € E for i=1,2. Using 1.4 and differential calculus, we obtain

Ty(x;1,, +x,1,,)=8,x, + B,x,
with B,=al/(e}+a}) i=1,2 r=(p—-1"" 2.3)

(2.3) clearly implies that T, is linear, if (a) is fulfilled.

2. If (b) is fulfilled, then T, is linear, since T, =T, is a projection on a
closed subspace of the Hilbert space L,(u, E).

3. Assume that (a) is not fulfilled and p > 2. There exist disjoint sets
A€, i=1,2,3, with a;=u(d,)>0 and 2=4,UA4,UA4;. Put
r=(p—1)"". W.lLg. we assume e+ (1 —a;) > af+ (1 —a;) fori=1,2.
Take an arbitrary x € E — {0} and define X; = x1,,, for i = 1, 2. According to
(23) we have T, X;=f;x, i=1,2, with §,=ai/(aj+ (1 —0a;)"), and
T,(X, +X,)=px with f=(a,+a,)/(a’+(1—a;)). 0<r<1 implies
ay+ay> (@, +a,)", and therefore f, + B, > (a] + a3)/(a; + (1 —a;)") > 6.
This inequality shows that T, is not linear. The case 1 <p <2 runs
similarly. i

4. Assume that (a) is not fulfilled, p =2, and T, is linear. Let 4; € &7,
i=1,2,3,beasin 3. Fori=1,2,3 put 4, =¢a,/(a, + a,). We will show

Al 4+ A 12,012 < Ay Aq [Ty — )12 4 1A %, + Ay, |12
for all x,,x, € E. (24)

Define: c¢,=inf{c>0: For all x,,x,€E holds A,|x,[*+24,[x,|I*<
Ay llx, — X, |1* + ¢ ||A; %, + 4,x%,]]*}. Let x,,x,EE be given. Take x,=
—A3 'A%, +Ayx,) and X=3]_, x;1,. Then (2.3) and the linearity of T,
imply T,X=0. For a € (0, 1] put y, =a(4,x, + 4,x,). According to (2.1),
we have 377_ A, 1lx; 1> < 223., A |ix; — y.||* This is equivalent to:
Al + Az 1l < Ay 1y = pall? + A, 1%, =y, II?
+ Qa + a?dy) | A, x; + A,x, ||% (%)

Putting a=1 in (), we obtain 4,|x,||> + 4, [|x, > <44, [|x, — x> +
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(24 2,) A, x; +Ayx,||%. Hence, ¢y<2+4,< co. Starting from () and
using the definition of c¢,, we can write

Ayl I + Ay [l 17
Sy Gy —ya) = (e = a)II?
+ o [[A () = ¥a) + Ay, =y IP 4+ Qa + @A) |4, x, + A,x, )2
=44, ([, = %, |1* + (co(1 — @) 4 2a + a®A;) || A, x, + 4,x, %
Whence we have for every a € (0, 1]:
Co <61 — @) + 2a + a’4,.

This implies ¢, < 1, which proves (2.4). The fact that E is a Hilbert space, if
(2.4) is fulfilled, is stated in the following proposition.

ProposITION 2.5. If (2.4) is fulfilled for some A, >0 with A, +4,=1,
then E is a Hilbert space.

Proof. We show first

gl 4+ 1207 = 1y + p2xa ) + 1v2%0 — vix, 17
for all x,,x, € E; with y,=A4}* for i= 1, 2. (2.5)

If x,, x, € E are given, then using (2.4), we obtain

a0+ 1112 = Ay o7 17+ 4, [y 1
<A, “yl_lxl -V llelz + Ay Xy + Ayyy ‘lelz
=y, %, + 7’2-"2”2 +117,% — 71x2||2-

An application of this inequality to y, =y,x, + y,x, and y, =y,x, — 9, X,
instead of x; and x,, yields the converse inequality.
Next we prove

lx—yll=lx+yl=lx—wl=Ix+wl  foralxy€E;
with y=(1+7y)/(1~7).  (26)

If x,y€EE are given and ||x —y| =|x+y|, then we apply (2.5) with
x,=x—yand x,=(1—7,)7;'x+ (1 +7y,)y;'y. After a short computation
we obtain ||x — py||=||x + y|. Since y > 0, y# 1, (2.6) implies that E is a
Hilbert space, according to [5] (1,).

The following corollary is an immediate consequence of Theorem 2.2 and
(2.3).
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CoroLLARY 2.7. T, X=X du for every X € L,(u, E), if and only if
(@) R is a p-atom, or the union of 2 y-atoms and p =2, or
(b) p=2 and E is a Hilbert space.

In the general case the relation between the Bochner integral and best
approximation by a constant can be stated as follows.

Remark 2.8. If E is a strictly convex Banach space, then the Bochner
integral is the unique linear continuous operator T:L,(u, E)— E, which
fulfills

[1X = TX? du=inf }[ 11X~ y) du:y € E

for every u-measurable X: 2 — E, which attains only 2 values.

Proof. From (2.3) and the linearity of T follows TX = [ X du for every
finitely valued u-measurable function X: 2 - E. Then TX = [ X du for every
XeL,(u,E), since T is continuous.
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